ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Halogen—deuterium exchange reaction mediated by tributyltin hydride using THF- d_8 as the deuterium source

Tomonobu Mutsumi ^{a,b,*}, Hiroki Iwata ^b, Kazuo Maruhashi ^a, Yasunari Monguchi ^b, Hironao Sajiki ^{b,*}

ARTICLE INFO

Article history:
Received 19 October 2010
Received in revised form 1 December 2010
Accepted 2 December 2010
Available online 9 December 2010

Keywords:
Halogen—deuterium exchange
Deuteration
THF-d₈
Deuterated solvent
Tributyltin hydride

ABSTRACT

A regioselective deuteration method for a wide variety of aromatic compounds using the halogen—deuterium exchange reaction initiated by Bu_3SnH using $THF-d_8$ as the deuterium source was developed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Deuterium (D)-labeled compounds are widely used in many fields, such as the structural studies of biological materials, elucidation of reaction mechanisms and microanalyses of metabolites, residual agrochemicals, environmental pollutants, etc.¹ Recently, deuterateddrugs (heavy-drugs, such as deuterated venlafaxine) have also created an area of active research,² since C–D bonds vibrate at lower frequencies and are more stable than C–H bonds. Because of these factors, the need for the development of efficient, convenient, and selective D-labeling methods has been increasing.³ Many D incorporation methods, such as the use of transition-metal catalysts,⁴ supercritical conditions,⁵ microwave irradiation,⁴q-s,6 etc.,² are reported in the literature. One of the more useful labeling methods already reported is the radical-mediated halogen—D exchange using Bu₃SnD as the D source.³ In this paper, we report a novel and radical method based on the Bu₃SnH-mediated halogen—D exchange reaction of aromatic nuclei using THF-d₈ as the D source.9

2. Results and discussion

When 2',3',5'-tri-O-benzoyl-5-iodocytidine was treated with Bu₃SnD (98 atm % D) and 2,2'-azobis(2,4-dimethylvaleronitrile) (V-

65) in boiled THF, the iodine(I)—D exchange reaction at the 5-position proceeded with only 4% D efficiency (Table 1, entry 1). Low D efficiencies (<22%) were also obtained by the use of other non-deuterium-labeled solvents, such as EtOAc, acetone, MeOH, EtOH, and MeCN, while use of THF- d_8 as the solvent led to a quantitative D incorporation (entry 2). Furthermore, a nearly quantitative D efficiency was achieved using even non-labeled Bu₃SnH with THF- d_8

 Table 1

 Verification of the deuterium source

Entry	Reagent (equiv)	V-65 (equiv)	Solvent ^a (v/w)	Time (h)	Yield ^b (%)	D Content ^c (%)
1	Bu ₃ SnD (1.7)	0.3	THF (20)	4	68	4
2	Bu ₃ SnD (1.2)	0.2	THF- d_8 (100)	1	64	99
3	Bu ₃ SnH (2.4)	0.4	THF- d_8 (100)	2.5	42	96

 $[^]a$ The usage (mL) of the solvent based on the weight (g) of 2',3',5'-tri-0-benzoyl-5-iodocytidine.

^a Chemical Technology Laboratory, Taiho Pharmaceutical Co., Ltd., 200-22 Motohara, Kamikawa-machi, Kodama-gun, Saitama 367-0241, Japan

^b Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan

^{*} Corresponding authors. Tel.: +81 495 77 2601; fax: +81 495 77 3799 (T.M.); tel./ fax: +81 58 230 8109 (H.S.); e-mail addresses: t-mutsumi@taiho.co.jp (T. Mutsumi), sajiki@gifu-pu.ac.jp (H. Sajiki).

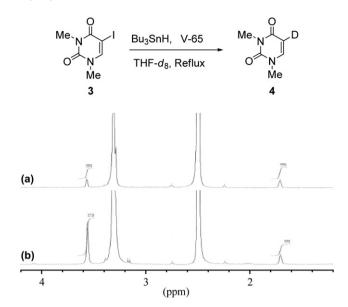
^b Isolated yield.

^c Determined by ¹H NMR.

(96% D efficiency, entry 3). These results indicated that THF- d_8 can work as a D source in the present deuteration.

The I–D exchange reactions of 2',3',5'-tri-0-benzoyl-5-iodocytidine using various deuterated solvents as D sources were performed (Table 2). THF- d_8 was the most preferable D source to achieve the nearly quantitative D efficiency (entry 1). Although the use of fully deuterated methanol, CD₃OD, led to an excellent D efficiency (92%, entry 4), the D content decreased to 33% in MeOD (entry 5), indicating that the CD₃ of methanol- d_4 plays a crucial role as the D source. Furthermore, CH₃CD₂OH was a better D source (entry 7) compared to other deuterated ethanols possessing different labeling patterns, such as CD₃CH₂OH and CH₃CH₂OD (entries 6 and 8). These results indicated that deuteriums on the carbon adjacent to the oxygen atom effectively work as the D sources.

Table 2Deuterium incorporation efficiency of various deuterated solvents


Entry	Solvent ^a (v/w)	Time (h)	Yield ^b (%)	D content ^c (%)
1	THF-d ₈ (100)	5	60	96
2	THF- d_8 (40)	6	68	80
3	THF- $d_8(20)$	5.5	65	78
4	CD ₃ OD (100)	5	83	92
5	MeOD (100)	6	76	33
6	$CD_3CH_2OH (100)$	5	69	7
7	$CH_3CD_2OH (100)$	5	71	79
8	CH ₃ CH ₂ OD (100)	5	67	32
9	Acetone- d_6 (200)	7	76	71
10	Acetone- d_6 (100)	6	61	59
11	Acetone- d_6 (40)	6	60	29
12	EtOAc-d ₈ (100)	9	52	59
13	CD ₃ CN (100)	10	quant.	22
14	EtOAc/THF-d ₈ , 9:1 (100)	7.5	68	49
15	MeCN/THF-d ₈ , 9:1 (100)	6	quant.	78
16	THF/THF-d ₈ , 1:1 (100)	5	70	9

 $^{^{\}rm a}$ The usage (mL) of the solvent based on the weight (g) of 2',3',5'-tri-O-benzoyl-5-iodocytidine.

The I–D exchange reaction of iodobenzene using the combination of Bu₃SnH and THF-d₈ has been reported as the only example to trace the reaction of aryl radicals with Bu₃SnH, although the actual D source was not specified. 10 To confirm the details of the D source, we further carried out the deuteration reaction of 5-iodo-1,3-dimethyluracil, and compared the peak intensities of each residual proton of THF- d_8 by ¹H NMR. The peak intensity of the 2- and 5-positions of the THF, which are adjacent to the oxygen atom, significantly increased, indicating that the deuterium atoms at the 2- and 5-positions of the THF- d_8 were preferably abstracted (Fig. 1). According to the relative bond dissociation energy values of THF C(2)-H and C(3)-H given by the semiempirical molecular orbital calculations applying the Austin Model 1 (AM1), the 2-yl radical of THF is approximately 3.87 kcal/ mol stable when compared to the 3-yl radical. 11 This fact might also support our results that the D atoms at the 2- and 5-positions of THF d_8 are more easily removed as the D sources.

We next examined the relation between the D efficiency and the substrate weight-for-volume of THF- d_8 . Decreasing the ratio of THF- d_8 led to the lower D content (Table 2, entries 1–3). A similar tendency was observed in the reaction using deuterated acetone (entries 9–11).

The I–D exchange reactions in diluted THF- d_8 with MeCN or EtOAc were further investigated. The deuterium efficiency in 10%

Fig. 1. 1 H NMR (DMSO- d_{6}) spectra of residual proton peaks in THF- d_{8} before (a) and after (b) the reaction of 5-iodo-1,3-dimethyluracil using Bu₃SnH and V-65 in THF- d_{8} .

THF- d_8 in MeCN was better than that in 10% THF- d_8 in EtOAc (Table 2, entries 14 and 15) since the I—H exchange reaction in MeCN is more unfavorable than in EtOAc, similar to the I—D exchange reactions in the corresponding deuterated solvents (entries 12 and 13). Furthermore, only a 9% D content was obtained in one-to-one mixture of THF- d_8 and THF due to the more preferable introduction of the H atom of THF into the cytosine ring compared with the deuterium atom of THF- d_8 based on the deuterium isotope effect (entry 16).

Next, the effects of other reagents, such as $(Bu_3Sn)_2$, Bu_3GeH , $Ph_4Si_2H_2$ (TPDS), and $(Me_3Si)_3SiH$ (TTMSS), instead of Bu_3SnH were examined. $(Bu_3Sn)_2$, Bu_3GeH , and TPDS also gave quite high deuteration ratios (Table 3, entries 2-4), while TTMSS was not very good as a reagent (65% D content). It is noteworthy that the deuteration using $(Bu_3Sn)_2$ possessing no Sn-H moiety within the molecule also smoothly proceeded with a high D content (entry 2).¹²

Table 3D efficiency of the reaction using various reagents

Entry	Reagent (equiv)	Initiator (equiv)	Time (h)	Yielda (%)	D content ^b (%)
1	Bu ₃ SnH (1.2)	V-65 (0.2)	2	62	90
2	$(Bu_3Sn)_2 (1.2)$	Light	8.5	73	90
3	Bu ₃ GeH (3.6)	V-65 (0.6)	6	43	93
4	TPDS ^c (7.2)	V-65 (3.8)	37.5	54	92
5	TTMSS ^d (1.8)	V-65 (0.3)	5	74	65

^a Isolated yield.

The halogen—D exchange reactions of various heterocyclic halides are summarized in Table 4. The reactions of 2',3',5'-tri-O-benzoyl-5-iodouridine ¹³ (entry 1), 3',5'-di-O-tert-butyldimethylsilyl-2'-deoxy-5-iodouridine (entry 2), 2',3',5'-tri-O-tert-butyldimethylsilyl-8-iodoadenosine ¹⁴ (entry 3), and 5-iodo-1,3-dimethyluracil (entry 4) also provided regioselectively deuterated products with efficient D contents (90–92%). The deuteration reaction using heterocyclic

b Isolated yield.

^c Determined by ¹H NMR.

^b Determined by ¹H NMR.

c Ph₄Si₂H₂.

d (Me₃Si)₃SiH.

Table 4Deuteration of heterocyclic aromatic substrates

Substrate Bu₃SnH, V-65
THF-d₈ (100 v/w), Reflux

Entry	Substrate	Bu₃SnH (equiv)	V-65 (equiv)	Time (h)	Substrate-d	Yield ^a (%)	D content ^b (%)
1	BzO OBz	2.4	0.4	5	BzO OBz	67	90
2	TBDMSO TBDMSO 7	1.2	0.2	3	TBDMSO TBDMSO 8	97	92
3	TBDMSO OTBDMS	2.4	0.4	5	TBDMSO OTBDMS	91	92
4	Me N N Me	1.2	0.2	2	Me N D Me	62	90
5	Me N Br Me	2.4	0.4	6	Me. N D Me	55	89
6	Br N OMe	3.6	0.6	6	D N OMe	78	92
7	Br N 14	3.6	0.6	6	D N 15	95	84
8	Me N CI O N Me 16	3.6	0.6	8	Me. N D Me	32	10

^a Isolated yield unless otherwise noted.

bromides, such as 5-bromo-1,3-dimethyluracil, 5-bromo-2-methoxy-pyrimidine, and 3-bromoquinoline, also successfully proceeded (entries 5–7). Furthermore, the present protocol was applicable to the deuteration of 5-chloro-1,3-dimethyluracil while the incorporation efficiency of D was not satisfactory (entry 8).

The deuteration of non-heterocyclic aromatic compounds was next carried out. Halogenated benzenes bearing electron-donating and -withdrawing substituents were both well-deuterated (entries 1–6 and 8–12, Table 5), although a significantly lower D efficiency (17%) was observed in the case of 1-bromo-2,4,6-

triisopropylbenzene, a sterically-hindered substrate (entry 7). Furthermore, the present method was also applicable for the deuteration of fused aromatic substrates, such as naphthalene derivatives (entries 11–13, see also Table 4, entry 7).

We next explored the reaction mechanism. These included the I–D exchange reactions using 2',3',5'-tri-O-benzoyl-5-iodocytidine as a substrate under three different reaction conditions, i.e., (1) with V-65 [2,2'-azobis(2,4-dimethylvaleronitrile)] as a radical initiator, (2) without V-65, and (3) with V-65 and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)¹⁵ as a radical scavenger. The reaction was

^b Determined by ¹H NMR.

Table 5Deuteration of non-heterocyclic aromatic substrates

Substrate $\frac{\text{Bu}_3\text{SnH, V-65}}{\text{THF-}d_8(100 \text{ v/w}), \text{Reflux}}$ Substrate-d

Entry	Substrate	Bu₃SnH (equiv)	V-65 (equiv)	Time (h)	Substrate-d	Yield ^a (%)	D content ^b (%)
1	Me I Me	2.4	0.4	5	Me D Me 18	72 (93) ^c	90
2	OMe OMe 19	2.4	0.4	5	OMe D OMe 20	100	85
3	OMe OMe 21	2.4	0.4	5	OMe OMe 22	100	69
4	Br OMe 23	2.4	0.4	5	OMe 24	94	61
5	Br OMe OMe 25	3.6	0.6	6	D OMe OMe 22	77	91
6	MeO OMe OMe 26	3.0	0.5	6	MeO OMe OMe 27	94	71
7	Br 28	1.2	0.2	3	D 29	98	17
8	CN 30	2.4	0.4	5	CN D 31	70	54
9	COOEt 32	3.6	0.6	6	COOEt D 33	78	80
10	COOEt Br 34	3.6	0.6	6	COOEt D 33	71	78
11	Br 35	2.4	0.4	6	D 36	68 (cont	57 inued on next page)

Table 5 (continued)

Entry	Substrate	Bu₃SnH (equiv)	V-65 (equiv)	Time (h)	Substrate-d	Yield ^a (%)	D content ^b (%)
12	OMe OMe	4.8	0.8	12	OMe OMe	90	75
13	39 Br	1.2	0.2	3	D 40	88	72

- ^a Isolated yield unless otherwise noted.
- ^b Determined by ¹H NMR.
- ^c The yield in the parentheses was determined by ¹H NMR using CH₂Cl₂ as an internal standard.

Table 6The effect of radical initiator (V-65) and radical scavenger (TEMPO) on the deuteration reaction of 2',3',5'-tri-O-benzoyl-5-iodocytidine

Entr	y Bu₃SnH (equiv)	V-65 (equiv)	TEMPO (equiv)	Time (h)	Residual SM ^a	D content ^b (%)	
1	2.4	0.4	0	5	No	96	
2	3.6	0	0	6	No	98	
3	3.6	0.6	18	8.5	Yes	c	

- ^a The residual starting material in the reaction mixture by TLC analysis.
- ^b Determined by ¹H NMR.
- ^c The product was not isolated.

slightly accelerated by the addition of V-65 (Table 6, entry 1) and the starting material (1) disappeared faster in comparison to the reaction without V-65 (entry 2) in spite of the low use of Bu₃SnH (2.4 equiv vs 3.6 equiv). Furthermore, the addition of TEMPO significantly suppressed the reaction progress. These results suggest that the present deuteration reaction was initiated by a radical mechanism.

The proposed reaction mechanism of the halogen—D exchange reaction is postulated in Fig. 2. The tributyltin radical species

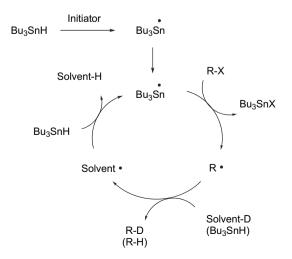


Fig. 2. The plausible reaction mechanism.

formed in the initiation step removes a halogen atom (X) from the substrate, forming Bu₃SnX and an aryl radical intermediate (R^{\bullet}), which removes a D radical from the carbon adjacent to the oxygen atom of the deuterated solvent to afford the corresponding D-labeled product (R-D). ¹⁶

3. Conclusion

A general method for the halogen—deuterium exchange reaction on aromatic nuclei using THF- d_8 as the D source to achieve a complete regioselectivity and sufficient D efficiency was established. The present reaction efficiently proceeded in the presence of V-65 as the radical initiator. The broad substrate applicability will significantly contribute to the preparation of regioselectively-labeled compounds that play useful roles in a variety of scientific fields.

4. Experimental

4.1. General methods

Bu₃SnH, V-65, and THF-d₈ were obtained from Kanto Chemical Co., Inc., Wako Pure Chemical Industries, Ltd., and Cambridge Isotope Laboratories Inc., respectively. Flash column chromatography was accomplished using Kanto Silica Gel 60 N (sphere, neutral), and the pre-treated silica gel with KF (Nacalai Tesque, Inc.) was used for **4.8**, **4.9**, **4.11**–**4.15**, **4.19**, **4.20**, and **4.23**. IR spectra were recorded by attenuated total refection (ATR) measurement with a Bruker FT-IR ALPHA spectrometer. The internal refection element (IRE) was diamond crystal. The ¹H NMR spectra were recorded on a JEOL INM-EX270 (270 MHz) or INM-AL400 (400 MHz). The ²H NMR spectra were recorded on a JEOL JNM-AL400 (61 MHz) or JNM-ECA500 (77 MHz). The chemical shifts (δ) are expressed in parts per million and are internally referenced. [0.00 ppm for tetramethylsilane for DMSO-*d*₆ (**4.2–4.7**, **4.16–4.19**, **4.22**, **4.23**) or 2.49 ppm for DMSO- d_6 (4.8–4.15, 4.20, 4.21, 4.24)]. The MS spectra were measured by a JEOL JMS-700, and the HRMS spectra were taken by a JEOL JMS-SX102A.

4.1.1. 2',3',5'-Tri-O-benzoyl-5-deuterocytidine (**2**, Table 1, entry 3). To a solution of 2',3',5'-tri-O-benzoyl-5-iodocytidine (20.0 mg, 29.4 μmol) and 2,2'-azobis(2,4-dimethylvaleronitrile) (V-65, 1.5 mg, 6.04 μmol) in THF- d_8 (2 mL) was added tri-n-butyltin hydride (Bu₃SnH, 9.4 μL, 34.9 μmol), and the mixture was stirred at reflux for 2.5 h. After the completion of the reaction, the reaction mixture was cooled to rt, then hexane (8 mL) was added. The precipitate was collected on filter paper and washed with hexane to give 2',3',5'-tri-O-benzoyl-5-deuterocytidine (6.8 mg, 42%). IR (ATR) cm⁻¹; 3063, 2962, 1721, 1631, 1486, 1451, 1350, 1316, 1259, 1177, 1090, 1067, 1024;

¹H NMR (270 MHz): 4.58–4.72 (m, 3H, 4'-H, 5'-H), 5.74 (d, J=7.3 Hz, 0.04H, 5-H), 5.89–5.98 (m, 2H, 2'-H, 3'-H), 6.07 (d, J=3.1 Hz, 1H, 1'-H), 7.35–8.02 (m, 18H, 6-H, benzoyl, and NH₂); ²H NMR: 5.77 (br); MS (FAB⁺): m/z 557 [M+H]⁺; HRMS (FAB⁺): calcd for $C_{30}H_{25}^{2}HN_{3}O_{8}$ [M+H]⁺: 557.17825, found: 557.17861.

4.1.2. 5-Deutero-1,3-dimethyluracil (**4**, Table 3, entry 1). A mixture of 1,3-dimethyl-5-iodouracil (40.0 mg, 150 μmol), Bu₃SnH (48.0 μL, 178 μmol), and V-65 (7.5 mg, 30.2 μmol) in THF- d_8 (4 mL) was stirred at reflux for 2 h. The reaction mixture was concentrated, then hexane (16 mL) was added to the residue. The precipitate was collected on filter paper to give 5-deutero-1,3-dimethyluracil (13.2 mg, 62%). IR (ATR) cm⁻¹; 3082, 2966, 1693, 1660, 1620, 1518, 1450, 1361, 1341, 1226, 1135, 1011; 1 H NMR (270 MHz): 3.15 (s, 3H, N–CH₃), 3.29 (s, 3H, N–CH₃), 5.66 (d, J=7.9 Hz, 0.10H, 5-H), 7.67 (t, 1H, 6-H); 2 H NMR: 5.67 (s); MS (EI⁺): m/z 141 [M]⁺; HRMS (EI⁺): calcd for C₆H₇²HN₂O₂: 141.06486, found: 141.06518 [M]⁺.

4.1.3. 2',3',5'-Tri-O-benzoyl-5-deuterouridine (**6**, Table 4, entry 1). A mixture of 2',3',5'-tri-O-benzoyl-5-iodouridine (40.0 mg, 58.6 μmol), Bu₃SnH (18.8 μL, 69.9 μmol), and V-65 (3.1 mg, 12.5 μmol) in THF- d_8 (4 mL) was stirred at reflux for 3 h. Bu₃SnH (18.8 μL, 69.9 μmol) and V-65 (3.2 mg, 12.9 μmol) were added, and the mixture was stirred at reflux for 2 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane → hexane/ethyl acetate=2:1) to give 2',3',5'-tri-O-benzoyl-5-deuterouridine (22.0 mg, 67%). IR (ATR) cm⁻¹; 3063, 1722, 1688, 1621, 1601, 1452, 1360, 1352, 1265, 1178, 1121, 1095, 1070, 1025; 1 H NMR (270 MHz): 4.60–4.75 (m, 3H, 4'-H, 5'-H), 5.68 (d, J=8.1 Hz, 0.10H, 5-H), 5.89–5.96 (m, 2H, 2'-H, 3'-H), 6.16 (d, J=3.6 Hz, 1H, 1'-H), 7.42–8.02 (m, 16H, 6-H, benzoyl) 11.51 (s, 1H, NH); MS (FAB⁺): m/z 558 [M+H]⁺; HRMS (FAB⁺): calcd for C₃₀H₂₄²HN₂O₉ [M+H]⁺: 558.16225, found: 558.16294.

4.1.4. 3',5'-Di-O-tert-butyldimethylsilyl-2'-deoxy-5-deuterouridine (**8**, Table 4, entry 2). A mixture of 3',5'-di-O-tert-butyldimethylsilyl-2'-deoxy-5-iodouridine (40.2 mg, 69.0 μmol), Bu₃SnH (22.3 μL, 82.9 μmol), and V-65 (3.5 mg, 14.1 μmol) in THF- d_8 (4 mL) was stirred at reflux for 3 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane → hexane/ethyl acetate=2:1) to give 3',5'-di-O-tert-butyldimethylsilyl-2'-deoxy-5-deuterouridine (30.5 mg, 97%). IR (ATR) cm⁻¹; 3177, 3056, 2954, 2885, 2867, 1681, 1620, 1460, 1389, 1361, 1275, 1255, 1196, 1121, 1066, 1031; ¹H NMR (270 MHz): 0.07 and 0.09 (each as s, 12H, SiMe), 0.88 and 0.89 (each as s, 18H, SiBu-t), 2.08–2.26 (m, 2H, 2'-H), 3.68–3.80 (m, 3H, 4'-H, 5'-H), 4.26–4.31 (m, 1H, 3'-H), 5.50 (d, J=8.2 Hz, 0.08H, 5-H), 6.13 (t, 1H, 1'-H), 7.70 (t, 1H, 6-H), 11.32 (s, 1H, NH); ²H NMR: 5.59 (br); MS (FAB⁺): m/z 458 [M+H]⁺; HRMS (FAB⁺): calcd for C₂₁H₄₀²HN₂O₅Si₂ [M+H]⁺: 458.26168, found: 458.26276.

4.1.5. 2',3',5'-Tri-O-tert-butyldimethylsilyl-8-deuteroadenosine (10, Table 4, entry 3). A mixture of 2',3',5'-tri-O-tert-butyldimethylsilyl-8-iodoadenosine (40.1 mg, 54.5 μmol), Bu₃SnH (17.4 μL, 64.7 μmol), and V-65 (2.8 mg, 11.3 μ mol) in THF- d_8 (4 mL) was stirred under reflux for 3 h. Bu_3SnH (17.4 μL , 64.7 μmol) and V-65 (2.7 mg, 10.9 μmol) were then added, and the mixture was stirred at reflux for 2 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane → hexane/ethyl acetate=2:1) to give 2',3',5'-tri-0-tert-butyldimethylsilyl-8-deuteroadenosine (30.2 mg, 91%). IR (ATR) cm⁻¹; 3318, 3165, 2964, 2930, 2896, 2868, 1646, 1557, 1462, 1406, 1361, 1321, 1284, 1264, 1158, 1128, 1074, 1044; ¹H NMR (270 MHz): -0.35, -0.10, 0.09, 0.12, and 0.14 (each as s, 18H, SiMe), 0.72, 0.90, and 0.93 (each as s, 27H, SiBu-t), 3.71-3.79 (m, 1H, 4'-H), 4.00-4.05 (m, 2H, 5'-H), 4.33 (br, 1H, 3'-H), 4.90–4.94 (m, 1H, 2'-H), 5.94 (d, *J*=6.3 Hz, 1H, 1'-H), 7.30 (s, 2H, NH₂), 8.13 (s, 1H, 2-H), 8.34 (s, 0.08H, 8-H); ²H NMR: 8.26 (br); MS (FAB⁺): m/z 611 [M+H]⁺; HRMS (FAB⁺): calcd for $C_{28}H_{55}^2HN_5O_4Si_3$ [M+H]⁺: 611.37030, found: 611.37079.

4.1.6. 5-Deutero-1,3-dimethyluracil (4, Table 4, entry 5). A mixture of 5-bromo-1,3-dimethyluracil (40.0 mg, 183 µmol), Bu₃SnH (59.0 µL, 219 µmol), and V-65 (9.2 mg, 37.0 µmol) in THF- d_8 (4 mL) was stirred at reflux for 3 h. Bu₃SnH (59.0 µL, 219 µmol) and V-65 (9.2 mg, 37.0 µmol) were then added, and the mixture was stirred at reflux for 3 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane \rightarrow hexane/ethyl acetate=1:1) and subsequent suspension with hexane (8 mL) to give 5-deutero-1,3-dimethyluracil (14.1 mg, 55%). ¹H NMR (270 MHz): 3.15 (s, 3H, N-CH₃), 3.29 (s, 3H, N-CH₃), 5.66 (d, J=7.7 Hz, 0.11H, 5-H), 7.67 (t, 1H, 6-H); ²H NMR: 5.67 (s); MS (EI+): m/z 141 [M]+; HRMS (EI+): calcd for $C_6H_7^2$ HN₂O₂: 141.06486, found: 141.06518 [M]+.

4.1.7. 5-Deutero-2-methoxypyrimidine (13, Table 4, entry 6). A mixture of 5-bromo-2-methoxypyrimidine (60.1 mg, 318 µmol), Bu₃SnH (103 µL, 382 µmol), and V-65 (15.9 mg, 63.2 µmol) in THF- d_8 (6 mL) was stirred at reflux for 3 h. Bu₃SnH (103 µL, 382 µmol) and V-65 (15.9 mg, 63.2 µmol) were added, and the mixture was stirred at reflux for 2 h. More Bu₃SnH (103 µL, 382 µmol) and V-65 (15.9 mg, 63.2 µmol) were added, and the mixture was stirred at reflux for 1 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane/ethyl acetate=10:1) to give 5-deutero-2-methoxypyrimidine (27.7 mg, 78%). ¹H NMR (400 MHz): 3.89 (s, 3H, O-CH₃), 7.13 (t, J=5.0 Hz, 0.08H, 5-H), 8.60 (s, 2H, 4-H, 6-H); ²H NMR: 7.16 (br); MS (FAB⁺): m/z 112 [M+H]⁺; HRMS (FAB⁺): calcd for C₅H₆²HN₂O [M+H]⁺: 112.06212, found: 112.06303.

4.1.8. 3-Deuteroquinoline (**15**, Table 4, entry 7). A mixture of 3-bromoquinoline (60.1 mg, 289 μmol), Bu₃SnH (93.3 μL, 347 μmol) and V-65 (14.4 mg, 58.0 μmol) in THF- d_8 (6 mL) was stirred at reflux for 3 h. Bu₃SnH (93.3 μL, 347 μmol) and V-65 (14.4 mg, 58.0 μmol) were added, and the mixture was stirred at reflux for 2 h. More Bu₃SnH (93.3 μL, 347 μmol) and V-65 (14.4 mg, 58.0 μmol) were added, and the mixture was stirred at reflux for 1 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane/ethyl acetate=5:1) to give 3-deuteroquinoline (35.6 mg, 95%). ¹H NMR (400 MHz): 7.52–7.55 (m, 0.16H, 3-H), 7.61 (t, J=7.4 Hz, 1H, 6-H), 7.76 (t, J=7.0 Hz, 1H, 7-H), 7.97–8.03 (m, 2H, 5-H, 8-H), 8.34 (s, 1H, 4-H), 8.91 (s, 1H, 2-H); ²H NMR: 7.56 (br); MS (FAB⁺): m/z 131 [M+H]⁺; HRMS (FAB⁺): calcd for $C_9H_7^2$ HN [M+H]⁺: 131.07195, found: 131.07154.

4.1.9. 5-Deutero-1,3-dimethyluracil (**4**, Table 4, entry 8). A mixture of 5-chloro-1,3-dimethyluracil (40.1 mg, 230 μmol), Bu₃SnH (74.0 μL, 275 μmol), and V-65 (11.4 mg, 45.9 μmol) in THF- d_8 (4 mL) was stirred at reflux for 3 h. Bu₃SnH (74.0 μL, 275 μmol) and V-65 (11.4 mg, 45.9 μmol) were added, and the mixture was stirred at reflux for 3 h. More Bu₃SnH (74.0 μL, 275 μmol) and V-65 (11.4 mg, 45.9 μmol) were added and the mixture was stirred at reflux for 2 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane → hexane/ethyl acetate=2:1) to give 5-deutero-1,3-dimethyluracil (10.4 mg, 32%). ¹H NMR (270 MHz): 3.15 (s, 3H, N−CH₃), 3.29 (s, 3H, N−CH₃), 5.66 (d, J=7.7 Hz, 0.90H, 5-H), 7.67 (d, J=7.8 Hz, 1H, 6-H); ²H NMR: 5.67 (s); MS (EI⁺): m/z 141 [M]⁺; HRMS (EI⁺): calcd for C₆H₇²HN₂O₂: 141.06486, found: 141.06518 [M]⁺.

4.1.10. 2-Deutero-1,3,5-trimethylbenzene (**18**, Table 5, entry 1). A mixture of 2-iodo-1,3,5-trimethylbenzene (40.1 mg, 163 μ mol), Bu₃SnH (52.6 μ L, 196 μ mol), and V-65 (8.1 mg, 32.6 μ mol) in THF- d_8 (4 mL) was stirred at reflux for 3 h. Bu₃SnH (52.6 μ L, 196 μ mol) and V-65 (8.2 mg, 33.0 μ mol) were added, and the mixture was stirred

at reflux for 2 h. The mixture was concentrated in vacuo. The 1 H NMR of the residue in DMSO- d_{6} was measured in the presence of CH₂Cl₂ (5.22 μ L, 81.5 μ mol) as an internal standard. The 1 H NMR sample was diluted with CH₂Cl₂ (10 mL) and concentrated in vacuo. The residue was purified by column chromatography on silica gel (pentane) to give 2-deutero-1,3,5-trimethylbenzene (14.2 mg, 72%). 1 H NMR (400 MHz): 2.20 (s, 9H, CH₃), 6.76 (s, 2.10H, 2-H, 4-H, 6-H); 2 H NMR: 6.78 (br); MS (EI⁺): m/z 121 [M]⁺; HRMS (EI⁺): calcd for C₉H $_{11}^{2}$ H [M]⁺: 121.10018, found: 121.09992.

4.1.11. 2-Deutero-1,3-dimethoxybenzene (**20**, Table 5, entry 2). A mixture of 2,6-dimethoxyiodobenzene (40.1 mg, 151 µmol), Bu₃SnH (48.7 µL, 181 µmol), and V-65 (7.5 mg, 30.2 µmol) in THF- d_8 (4 mL) was stirred at reflux for 3 h. Bu₃SnH (48.7 µL, 181 µmol) and V-65 (7.5 mg, 30.2 µmol) were added, and the mixture was stirred at reflux for 2 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (pentane/Et₂O=40:1) to give 2-deutero-1,3-dimethoxybenzene (21.1 mg, 100%). ¹H NMR (400 MHz): 3.72 (s, 6H, O-CH₃), 6.46-6.51 (m, 2.15H, 2-H, 4-H, 6-H), 7.17 (t, J=8.1 Hz, 1H, 5-H); ²H NMR: 6.50 (br); MS(EI⁺): m/z 139 [M]⁺; HRMS (EI⁺): calcd for C₈H₉²HO₂ [M]⁺: 139.07436, found: 139.07515.

4.1.12. 4-Deutero-1,3-dimethoxybenzene (**22**, Table 5, entry 3). A mixture of 2,4-dimethoxyiodobenzene (40.0 mg, 152 µmol), Bu₃SnH (48.7 µL, 181 µmol), and V-65 (7.5 mg, 30.2 µmol) in THF- d_8 (4 mL) was stirred at reflux for 3 h. Bu₃SnH (48.7 µL, 181 µmol) and V-65 (7.5 mg, 30.2 µmol) were added, and the mixture was stirred at reflux for 2 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (pentane/Et₂O=40:1) to give 4-deutero-1,3-dimethoxybenzene (21.1 mg, 100%). ¹H NMR (400 MHz): 3.72 (s, 6H, O-CH₃), 6.47-6.51 (m, 2.31H, 2-H, 4-H, 6-H), 7.17 (m, 1H, 5-H); ²H NMR: 6.52 (br); MS (EI⁺): m/z 139 [M]⁺; HRMS (EI⁺): calcd for $C_8H_9^2HO_2$ [M]⁺: 139.07436, found: 139.07451.

4.1.13. 4-Deuteromethoxybenzene (**24**, Table 5, entry 4). A mixture of 1-bromo-4-methoxybenzene (40.0 mg, 214 μmol), Bu₃SnH (69.1 μL, 257 μmol), and V-65 (10.6 mg, 42.7 μmol) in THF- d_8 (4 mL) was stirred at reflux for 3 h. Bu₃SnH (69.1 μL, 257 μmol) and V-65 (10.6 mg, 42.7 μmol) were added, and the mixture was stirred at reflux for 2 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (pentane) to give 4-deuteromethoxybenzene (22.2 mg, 94%). ¹H NMR (400 MHz): 3.73 (s, 3H, O–CH₃), 6.91–6.93 (m, 2.39H, 2-H, 4-H, 6-H), 7.26–7.30 (m, 2H, 3-H, 5-H); ²H NMR: 6.94 (br); MS (EI⁺): m/z 109 [M]⁺; HRMS (EI⁺): calcd for $C_7H_7^2$ HO [M]⁺: 109.06380, found: 109.06445.

4.1.14. 4-Deutero-1,3-dimethoxybenzene (**22**, Table 5, entry 5). A mixture of 1-bromo-2,4-dimethoxybenzene (80.1 mg, 369 µmol), Bu₃SnH (119 µL, 442 µmol), and V-65 (18.3 mg, 73.7 µmol) in THF- d_8 (8 mL) was stirred at reflux for 3 h. Bu₃SnH (119 µL, 442 µmol) and V-65 (18.3 mg, 73.7 µmol) were added, and the mixture was stirred at reflux for 2 h. Further Bu₃SnH (119 µL, 442 µmol) and V-65 (918 mg, 73.7 µmol) were added, and the mixture was stirred at reflux for 1 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography twice on silica gel (hexane/ethyl acetate=10:1 and hexane/ethyl acetate=20:1) to give 4-deutero-1,3-dimethoxybenzene (39.4 mg, 77%). ¹H NMR (400 MHz): 3.73 (s, 6H, O–CH₃), 6.47–6.53 (m, 2.09H, 2-H, 4-H, 6-H), 7.15–7.21 (m, 1H, 5-H); ²H NMR: 6.53 (br); MS (EI⁺): m/z 139 [M]⁺; HRMS (EI⁺): calcd for $C_8H_9^2HO_2$ [M]⁺: 139.07436, found: 139.07469.

4.1.15. 5-Deutero-1,2,3-trimethoxybenzene (**27**, Table 5, entry 6). A mixture of 1-bromo-3,4,5-trimethoxybenzene (80.0 mg, 324 μ mol), Bu₃SnH (105 μ L, 390 μ mol), and V-65 (16.1 mg, 64.8 μ mol) in THF- d_8

(8 mL) was stirred at reflux for 3 h. Bu₃SnH (105 μL, 390 μmol) and V-65 (16.2 mg, 65.2 μmol) were added, and the reaction mixture was stirred at reflux for 2 h. More Bu₃SnH (52.3 μL, 194 μmol) and V-65 (8.1 mg, 32.6 μmol) were added, and the mixture was stirred at reflux for 1 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane/ethyl acetate=4:1) to give 5-deutero-1,2,3-trimethoxybenzene (51.3 mg, 94%). IR (ATR) cm⁻¹; 2997, 2937, 2834, 1590, 1493, 1478, 1457, 1418, 1292, 1240, 1174, 1126, 1112, 1034, 1008; ¹H NMR (270 MHz): 3.65 (s, 3H, O-CH₃), 3.76 (s, 6H, O-CH₃), 6.65 (t, 2H, 4-H, 6-H), 6.99 (t, J=8.3 Hz, 0.29H, 5-H); ²H NMR: 7.00 (br); MS (EI⁺): m/z 169 [M]⁺; HRMS (EI⁺): calcd for C₉H₁₁²HO₃ [M]⁺: 169.08493, found: 169.08578.

4.1.16. 2-Deutero-1,3,5-triisopropylbenzene (**29**, Table 5, entry 7). A mixture of 2-bromo-1,3,5-triisopropylbenzene (60.1 mg, 212 μ mol), Bu₃SnH (68.3 μ L, 254 μ mol), and V-65 (10.5 mg, 42.3 μ mol) in THF- d_8 (6 mL) was stirred at reflux for 3 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane) to give 2-deutero-1,3,5-triisopropylbenzene (42.9 mg, 98%). ¹H NMR (270 MHz): 1.17 and 1.20 (each as s, 18H, CH₃), 2.77–2.88 (m, 3H, CH), 6.89 (s, 2.83H, 2-H, 4-H, 6-H).

4.1.17. 1-Cyano-3-deuterobenzene (31, Table 5, entry 8). A mixture of 1-cyano-3-iodobenzene (40.1 mg, 175 μmol), Bu₃SnH (56.5 μL, 210 μmol), and V-65 (8.7 mg, 35.0 μmol) in THF- d_8 (4 mL) was stirred at reflux for 3 h. Bu₃SnH (56.5 μL, 210 μmol) and V-65 (8.8 mg, 35.4 μmol) were added, and the mixture was stirred at reflux for 2 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane → hexane/ethyl acetate=20:1) to give 1-cyano-3-deuterobenzene (12.8 mg, 70%). IR (ATR) cm⁻¹; 3438, 2998, 2914, 1662, 1436, 1407, 1311, 1018; ¹H NMR (270 MHz,): 7.56−7.62 (m, 1.46H, 3-H, 5-H), 7.70−7.77 (m, 1H, 4-H), 7.83−7.86 (m, 2H, 2-H, 6-H); ²H NMR: 7.61 (br); MS (EI⁺): m/z 104 [M]⁺; HRMS (EI⁺): calcd for C₇H₄²HN [M]⁺: 104.04847, found: 104.04930.

4.1.18. Ethyl 4-deuterobenzoate (33, Table 5, entry 9). A mixture of ethyl 4-iodobenzoate (60.2 mg, 218 μmol), Bu₃SnH (70.0 μL, 260 μ mol), and V-65 (10.8 mg, 43.5 μ mol) in THF- d_8 (6 mL) was stirred at reflux for 3 h. Bu₃SnH (70.0 µL, 260 µmol) and V-65 (10.8 mg, 43.5 µmol) were added, and the mixture was stirred at reflux for 2 h. More Bu_3SnH (70.0 μL , 260 μmol) and V-65 (10.8 mg, 43.5 µmol) were added, and the mixture was stirred at reflux for 1 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane/ethyl acetate=20:1) to give ethyl 4-deuterobenzoate (25.7 mg, 78%). IR (ATR) cm⁻¹; 3088, 3066, 3032, 2982, 2950, 2926, 2868, 2850, 1716, 1559, 1450, 1408, 1391, 1367, 1311, 1271, 1174, 1105, 1071, 1026; ¹H NMR (400 MHz): 1.33 (t, J=7.1 Hz, 3H, CH₃), 4.28-4.36 (dd, J=7.1 Hz, 2H, CH₂), 7.50–7.56 (m, 2H, 3-H, 5-H), 7.66 (t, J=7.3 Hz, 0.20H, 4-H), 7.97 (d, J=7.9 Hz, 2H, 2-H, 6-H); ²H NMR: 7.66 (br); MS (EI⁺): m/z 151 [M]⁺; HRMS (EI⁺): calcd for C₉H₉²HO₂ [M]⁺: 151.07436, found: 151.07510.

4.1.19. Ethyl 4-deuterobenzoate (**33**, Table 5, entry 10). A mixture of ethyl 4-bromobenzoate (60.1 mg, 262 μmol), Bu₃SnH (84.6 μL, 314 μmol), and V-65 (13.0 mg, 52.3 μmol) in THF- d_8 (6 mL) was stirred at reflux for 3 h. Bu₃SnH (84.6 μL, 314 μmol) and V-65 (13.0 mg, 52.3 μmol) were added, and the mixture was stirred at reflux for 2 h. More Bu₃SnH (84.6 μL, 314 μmol) and V-65 (13.0 mg, 52.3 μmol) were added, and the mixture was stirred at reflux for 1 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane/ethyl acetate=20:1) to give ethyl 4-deuterobenzoate (28.3 mg, 71%). 1 H NMR (400 MHz): 1.32 (t, J=6.8 Hz, 3H, CH₃), 4.28–4.36 (dd,

J=7.1 Hz, 2H, CH₂), 7.50–7.56 (m, 2H, 3-H, 5-H), 7.66 (t, J=7.3 Hz, 0.22H, 4-H), 7.97 (d, J=7.9 Hz, 2H, 2-H, 6-H); ²H NMR: 7.67 (br); MS (EI⁺): m/z 151 [M]⁺; HRMS (EI⁺): calcd for C₉H₉²HO₂ [M]⁺: 151.07436, found: 151.07344.

4.1.20. 1-Deuteronaphthalene (**36**, Table 5, entry 11). A mixture of 1-bromonaphthalene (60.0 mg, 290 μmol), Bu₃SnH (93.6 μL, 348 μmol), and V-65 (14.4 mg, 58.0 μmol) in THF- d_8 (6 mL) was stirred at reflux for 3 h. Bu₃SnH (93.6 μL, 348 μmol) and V-65 (14.4 mg, 58.0 μmol) were added, and the mixture was stirred at reflux for 2 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane) to give 1-deuteronaphthalene (25.6 mg, 68%). IR (ATR) cm⁻¹; 3054, 1593, 1504, 1381, 1346, 1265, 1214, 1127, 1011; 1 H NMR (270 MHz.): 7.49–7.55 (m, 4H, 2-H, 3-H, 6-H, 7-H), 7.89–7.95 (m, 3.43H, 1-H, 4-H, 5-H, 8-H); 2 H NMR: 7.93 (br); MS (EI⁺): m/z 129 [M]⁺; HRMS (EI⁺): calcd for $C_{10}H_7^2$ H [M]⁺: 129.06888, found: 129.06915.

4.1.21. 1-Deutero-2,3-dimethoxynaphthalene (**38**, Table 5, entry 12). A mixture of 1-bromo-2,3-dimethoxynaphthalene (60.1 mg, 225 μmol), Bu₃SnH (72.6 μL, 270 μmol), and V-65 (11.2 mg, 45.1 μmol) in THF- d_8 (6 mL) was stirred at reflux for 3 h. Bu₃SnH (72.6 μL, 270 μmol) and V-65 (11.2 mg, 45.1 μmol) were added three times every 3 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel twice (hexane \rightarrow hexane/ethyl acetate=20:1 \rightarrow hexane/ethyl acetate=4:1, and hexane/ethyl acetate=4:1) to give 1-deutero-2,3-dimethoxynaphthalene (38.3 mg, 90%). IR (ATR) cm⁻¹; 3057, 3015, 2999, 2970, 2937, 2833, 1619, 1598, 1503, 1486, 1465, 1431, 1326, 1260, 1219, 1197, 1165, 1114, 1052, 1003; 1 H NMR (270 MHz): 3.88 (s, 6H, O–CH₃), 7.29–7.34 (m, 3.25H, 1-H, 4-H, 6-H, 7-H), 7.72–7.77 (m, 2H, 5-H, 8-H); 2 H NMR: 7.32 (br); MS (EI⁺): m/z 189 [M]⁺; HRMS (EI⁺): calcd for C₁₂H₁₁²HO₂ [M]⁺: 189.09001, found: 189.09094.

4.1.22. 2-Deuteronaphthalene (**40**, Table 5, entry 13). A mixture of 2-bromonaphthalene (40.0 mg, 193 μmol), Bu₃SnH (62.4 μL, 232 μmol), and V-65 (9.6 mg, 38.7 μmol) in THF- d_8 (4 mL) was stirred at reflux for 3 h. The mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (pentane) to give 2-deuteronaphthalene (22.1 mg, 88%). ¹H NMR (400 MHz,): 7.49–7.52 (m, 3.28H, 2-H, 3-H, 6-H, 7-H), 7.89–7.91 (m, 4H, 1-H, 4-H, 5-H, 8-H); ²H NMR: 7.53 (br); MS (EI⁺): m/z 129 [M]⁺; HRMS (EI⁺): calcd for $C_{10}H_7^2H$ [M]⁺: 129.06888, found: 129.06937.

References and notes

- (a) Pieniaszek, H. J.; Mayersohn, M.; Adams, M. P.; Reinhart, R. J.; Barrett, J. S. J. Clin. Pharmacol. 1999, 39, 817; (b) Yen, K. C.; Stone, J. A.; Carides, A. D.; Rolan, P.; Woolf, E.; Ju, W. D. J. Pharm. Sci. 1999, 88, 568; (c) Gani, D.; Young, D. W. J. Chem. Soc., Chem. Commun. 1983, 576; (d) Gani, D.; Hitchcock, P. B.; Young, D. W. J. Chem. Soc., Chem. Commun. 1983, 898.
- (a) Elison, C.; Rapoport, H.; Laursen, R.; Elliott, H. W. Science 1961, 134, 1078; (b) Shao, L.; Abolin, C.; Hewitt, M. C.; Koch, P.; Varney, M. Bioorg. Med. Chem. Lett. 2006, 16, 691; (c) Chem. Eng. News 2009, 87, 36; (d) Thomas, G.G.; Sarshar, S.; Hyung, S.W. Patent, WO 2008/140859 A1, 2008.
- (a) Sajiki, H.; Aoki, F.; Esaki, H.; Maegawa, T.; Hirota, K. Org. Lett. 2004, 6, 1485;
 (b) Sajiki, H.; Kurita, T.; Esaki, H.; Aoki, F.; Maegawa, T.; Hirota, K. Org. Lett. 2004,
 6, 3521;
 (c) Sajiki, H.; Ito, N.; Esaki, H.; Maesawa, T.; Maegawa, T.; Hirota, K. Tetrahedron Lett. 2005, 46, 6995;
 (d) Maegawa, T.; Akashi, A.; Esaki, H.; Aoki, F.; Sajiki, H.; Hirota, K. Synlett 2005, 1385;
 (f) Esaki, H.; Aoki, F.; Maegawa, T.; Hirota, K.;

- Sajiki, H. Heterocycles 2005, 66, 361; (g) Ito, N.; Watahiki, T.; Maesawa, T.; Maegawa, T.; Sajiki, H. Adv. Synth. Catal. 2006, 348, 1025; (h) Esaki, H.; Ito, N.; Sakai, S.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Tetrahedron 2006, 62, 10954; (i) Esaki, H.; Ohtaki, R.; Maegawa, T.; Monguchi, Y.; Sajiki, H. J. Org. Chem. 2007, 72, 2143; (j) Esaki, H.; Aoki, F.; Umemura, M.; Kato, M.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chem.—Eur. J. 2007, 13, 4052; (k) Kurita, T.; Hattori, K.; Seki, S.; Mizumoto, T.; Aoki, F.; Yamada, Y.; Ikawa, K.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chem.—Eur. J. **2008**, 14, 664; (1) Ito, N.; Watahiki, T.; Maesawa, T.; Maegawa, T.; Sajiki, H. Synthesis 2008, 1467; (m) Kurita, T.: Aoki, F.: Mizumoto, T.: Maejima, T.; Esaki, H.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chem.—Eur. J. 2008, 14, 3371; (n) Maegawa, T.; Fujiwara, Y.; Inagaki, Y.; Esaki, H.; Monguchi, Y.; Sajiki, H. Angew. Chem., Int. Ed. **2008**, 47, 5394; (o) Ito, N.; Esaki, H.; Imamiya, E.; Maesawa, T.; Maegawa, T.; Sajiki, H. Bull. Chem. Soc. Jpn. 2008, 81, 278; (p) Maegawa, T.; Fujiwara, Y.; Inagaki, Y.; Monguchi, Y.; Sajiki, H. Adv. Synth. Catal. 2008, 350, 2215; (q) Maegawa, T.; Ito, N.; Oono, K.; Monguchi, Y.; Sajiki, H. Synthesis 2009, 16, 2674.
- 4. (a) Brown, W. G.; Garnett, J. L. J. Am. Chem. Soc. 1958, 80, 5272; (b) Fraser, R. R.; Renaud, R. N. J. Am. Chem. Soc. 1966, 88, 4365; (c) Garnett, J. L.; Hodges, R. J. J. Am. Chem. Soc. 1967, 89, 4546; (d) Garnett, J. L.; Long, M. A.; McLaren, A. B.; Peterson, K. B. J. Chem. Soc., Chem. Commun. 1973, 749; (e) Blake, M. R.; Garnett, J. L.; Gregor, I. K.; Hannan, W.; Hoa, K.; Long, M. A. J. Chem. Soc., Chem. Commun. 1975, 930; (f) Hesk, D.; Jones, J. R.; Lockley, W. J. S. J. Labelled Compd. Radiopharm. 1990, 28, 1427; (g) Hesk, D.; Jones, J. R.; Lockley, W. J. S. J. Pharm. Sci. 1991, 80, 887; (h) Heys, J. R.; Shu, A. Y. L.; Senderoff, S. G.; Phillips, N. M. J. Labelled Compd. Radiopharm. 1993, 33, 431; (i) Lukey, C. A.; Long, M. A.; Garnett, J. L. Aust. J. Chem. 1995, 48, 79; (j) Buncel, E.; Clement, O. J. Chem. Soc., Perkin Trans. 2 1995, 1333; (k) Van Genderen, M. H. P.; Pfaadt, M.; Moller, C.; Valiyaveettil, S.; Spiess, H. W. J. Am. Chem. Soc. 1996, 118, 3661; (1) Hardacre, C.; Holbrey, J. D.; McMth, S. E. J. Chem. Commun. 2001, 367; (m) Klei, S. R.; Golden, J. T.; Tilley, T. D.; Bergman, R. G. J. Am. Chem. Soc. 2002, 124, 2092; (n) Hickey, M. J.; Jones, J. R.; Kingston, L. P.; Lockley, W. J. S.; Mather, A. N.; McAuley, B. M.; Wilkinson, D. J. Tetrahedron Lett. 2003, 44, 3959; (o) Matsubara, S.; Yokota, K.; Oshima, K.; Matsubara, S. Chem. Commun. 2004, 1714; (p) Yamamoto, M.; Oshima, K.; Matsubara, S. Chem. Commun. 2004, 1714; (q) Yamamoto, M.; Oshima, K.; Matsubara, S. Org. Lett. 2004, 6, 5015; (r) Takahashi, M.; Oshima, K.; Matsubara, S. Chem. Lett. 2005, 34, 192; (s) Ishibashi, K.; Takahashi, M.; Yokota, Y.; Oshima, K.; Matsubara, S. Chem. Lett. 2005, 34, 664; (t) Derdau, V.; Atzrodt, J. Synlett 2006, 1918; (u) Yamamoto, M.; Oshima, K.; Matsubara, S. Heterocycles 2006, 67, 353; (v) Prechtl, M. H. G.; Holscher, M.; Ben-David, Y.; Thcyssen, N.; Loschen, R.; Milstein, D.; Leitner, W. Angew. Chem., Int. Ed. 2007, 46, 2269.
- (a) Junk, T.; Catallo, W. J. Tetrahedron Lett. 1996, 37, 3445; (b) Junk, T.; Catallo, W. J.; Civils, L. D. J. Labelled Compd. Radiopharm. 1997, 36, 625; (c) Junk, T.; Catallo, W. J.; Elguero, J. Tetrahedron Lett. 1997, 38, 6309.
- (a) Vaidyanathan, S.; Surber, B. W. Tetrahedron Lett. 2005, 46, 5195; (b) Hakala, U.; Wahala, K. J. Org. Chem. 2007, 72, 5817.
- (a) Garnett, J. L.; Hodges, R. J. J. Am. Chem. Soc. 1967, 89, 4645; (b) Garnett, J. L.; liodges, R. J. J. Chem. Soc., Chem. Commun. 1967, 1001; (c) Bean, G. P.; Johnson, A. R.; Katrizky, A. R.; Ridgewell, B. J.; White, A. M. J. Chem. Soc. B 1967, 1219; (d) Long, M. A.; Garnett, J. L.; Vining, R. F. W.; Mole, T. J. Am. Chem. Soc. 1972, 8632; (e) Werstiuk, N. H.; Kadai, T. Can. J. Chem. 1974, 52, 2169; (f) Tashiro, M.; Nakayama, K. J. Chem. Soc., Perkin Trans. 1 1983, 2315; (g) Iranzo, G. Y.; Elguero, J. J. Labelled Compd. Radiopharm. 1990, 28, 967; (h) Okazaki, M.; Uchino, N.; Nozaki, N.; Kubo, K. Bull. Chem. Soc. Jpn. 1995, 68, 1024.
- 8. (a) Neumann, W. P. Synthesis **1987**, 665; (b) Oba, M.; Nishiyama, K. Synthesis **1994**, 624; (c) Albert, H. J.; Neumann, W. P. Synthesis **1980**, 942.
- We reported preliminary results regarding the iodine—deuterium exchange reaction on pyrimidine and purine nuclei as a communication, see Mutsumi, T.; Maruhashi, K.; Monguchi, Y.; Sajiki, H. Synlett 2008, 18, 2811.
- Garden, S. J.; Avila, D. V.; Beckwith, A. L. J.; Bowry, V. W.; Ingold, K. U.; Lusztyk, J. J. Org. Chem. 1996, 61, 805.
- 11. Beckwith, A. L. J.; Zavitsas, A. A. J. Am. Chem. Soc. 1995, 117, 607.
- 12. Bu₃SnH was selected over (Bu₃Sn)₂ because of the most efficient consumption of the substrate with almost equivalent D content and yield.
- 13. Asakura, J.; Robins, M. J. Tetrahedron Lett. 1988, 29, 2855.
- (a) Moriarty, R. M.; Epa, W. R.; Awasthi, A. K. Tetrahedron Lett. 1990, 31, 5877;
 (b) Hayakawa, H.; Tanaka, H.; Sasaki, K.; Haraguchi, K.; Saitoh, T.; Takai, F.; Miyasaka, T. J. Heterocycl. Chem. 1989, 26, 189;
 (c) Hayakawa, H.; Tanaka, H.; Haraguchi, K.; Mayumi, M.; Nakajima, M.; Sakamaki, T.; Miyasaka, T. Nucleosides Nucleotides 1988, 7, 121.
- 15. Lucarini, M.; Marchesi, E.; Pedulli, G. F. J. Org. Chem. 1998, 63, 1687.
- 16. The halogen—deuterium exchange reaction on benzene and naphthalene rings proceeded with moderate D efficiencies (50–80%) by the competitive abstraction of deuterium atom of THF-d₈ versus hydrogen atom of excess amount of Bu₃SnH.
- 17. Harrowven, D. C.; Guy, I. L. Chem. Commun. 2004, 1968.